Constructive Approximation by Monotonous Polynomial Sequences in $\operatorname{Lip}_{M} a$, with $a \in(0,1]$

S. G. GAL
Computer Center "Infrătirea," 3700 Oradea, Romania
Communicated by R. Bojanic

Received January 4, 1988

1. Introduction

In several papers [2-6], I have proved, for example, that every $f \in C_{[a, b]}$ can be uniformly approximated by polynomial sequences $\left(P_{n}\right)_{n},\left(Q_{n}\right)_{n}$ such that

$$
\begin{gather*}
Q_{n}(x)<Q_{n+1}(x)<f(x)<P_{n+1}(x)<P_{n}(x), \\
\forall x \in[a, b], \forall n=1,2, \ldots, \tag{1}
\end{gather*}
$$

(see, e.g., [3, p. 26]).
In the particular case $f \in \operatorname{Lip}_{M} 1$, I have obtained the sequences $\left(P_{n}\right)_{n}$ and $\left(Q_{n}\right)_{n}$ in a constructive way (see, e.g., [3, pp. 27-28]).
The purpose of this note is to construct the polynomials of (1), in the case $f \in \operatorname{Lip}_{M} \alpha, 0<\alpha \leqslant 1$.

The construction of $\left(P_{n}\right)_{n},\left(Q_{n}\right)_{n}$ in the general case remains an open question.

2. Constructive Solutions in $\operatorname{Lip}_{M} \alpha, 0<\alpha \leqslant 1$

For $\alpha \in(0,1]$, a function $f:[0,1] \rightarrow R$ is called Hölder of class α, if there exists a constant $M>0$ such that $|f(x)-f(y)| \leqslant M|x-y|^{\alpha}, \forall x, y \in[0,1]$. We denote by $\operatorname{Lip}_{M} \alpha$ the set of all Hölder functions of the above class α and by $B_{n}(f ; x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f(k / n)$ the Bernstein polynomials.

Theorem 2.1. If $f \in \operatorname{Lip}_{M^{\prime}}$ (where $\alpha \in(0,1]$), then for each p, a fixed integer $\geqslant 4 / \alpha$, the polynomial sequence defined by

$$
\begin{gathered}
P_{n}(x)=B_{n}(f ; x)+a_{n}, \\
356
\end{gathered}
$$

0021-9045/89 \$3.00
where $a_{n}=2 K_{0} M \sum_{j=n}^{\infty} 1 / j^{2}$ and K_{0} is Sikkema's constant, satisfies $P_{n} \rightarrow f$, uniformly on $[0,1]$ and $f(x)<P_{n+1}(x)<P_{n}(x), \forall x \in[0,1], \forall n=1,2, \ldots$.

Proof. It is well known [7] that if $f \in \operatorname{Lip}_{M} \alpha, \alpha \in(0,1]$, then

$$
\left|f(x)-B_{n}(f ; x)\right| \leqslant K_{0} M /\left(n^{\alpha / 2}\right), \quad \forall x \in[0,1], \forall n=1,2, \ldots
$$

Hence, evidently,

$$
\left|f(x)-B_{n^{\rho}}(f ; x)\right| \leqslant K_{0} M /\left(n^{p \alpha / 2}\right), \quad \forall x \in[0,1], \forall n=1,2, \ldots
$$

Then, $\left|B_{n \rho}(f ; x)-B_{(n+1)}(f ; x)\right| \leqslant\left|B_{n^{p}}(f ; x)-f(x)\right|+\mid f(x)-$ $B_{(n+1)^{\rho}}(f ; x) \mid \leqslant K_{0} M\left[1 /\left(n^{p \alpha / 2}\right)+1 /(n+1)^{p \alpha / 2}\right]<2 K_{0} M /\left(n^{p x / 2}\right) \leqslant 2 K_{0} M / n^{2}$, $\forall x \in[0,1], \forall r=1,2, \ldots$, because $p \alpha / 2 \geqslant 2$ from hypothesis.

Hence, $P_{n+1}(x)-P_{n}(x)=B_{n^{0}}(f ; x)-B_{(n+1)^{p}}(f ; x)+a_{n}-a_{n+1}=$ $B_{n^{\rho}}(f ; x)-B_{(n+1)^{\rho}}(f ; x)+2 K_{0} M / n^{2}>0, \forall x \in[0,1], \forall n=1,2, \ldots$.

Also, because $a_{n} \searrow 0$, it follows that $P_{n} \rightarrow f$ uniformly on [0,1], which completes the proof.

Corollary 2.2. If $f \in \operatorname{Lip}_{M} \alpha, \alpha \in(0,1]$, then, for each p, a fixed integer $\geqslant 4 / \alpha$, the polynomial sequence defined by

$$
Q_{n}(x)=B_{n^{0}}(f ; x)-a_{n}, \quad x \in[0,1], n=1,2, \ldots
$$

satisfies $Q_{n} \xrightarrow{n} f$ uniformly on $[0,1]$ and $Q_{n}(x)<Q_{n+1}(x)<f(x)$, $\forall x \in[0,1], \forall n=1,2, \ldots$.

The proof is entirely analogous.
Remarks. (1) For $\alpha=1$, choosing $p=4$, we obtain the construction from [3, p. 27].
(2) We have $\left|P_{n}(x)-f(x)\right| \leqslant\left|B_{n}(f ; x)-f(x)\right|+a_{n} \leqslant K_{0} M /\left(n^{p \alpha / 2}\right)+$ a_{n}, where $a_{n}<1 /(n-1), n=2,3, \ldots$ (see [3, pp. 28-29]). Thus, the degree of approximation is $O\left(1 / n^{p x / 2}\right)+O(1 /(n-1))$.

For the polynomials $Q_{n}(x)$, we have an analogous estimate.
(3) Recently, the following result was obtained [1]: If $f \in \operatorname{Lip}_{M} \alpha$, then $B_{n}(f ; x) \in \operatorname{Lip}_{M} \alpha, \forall n \geqslant 1(\alpha \in(0,1])$.

Thus, the polynomials $P_{n}(x)$ and $Q_{n}(x)$, defined in Theorem 2.1 and Corollary 2.2, have the properties $P_{n}(x) \in \operatorname{Lip}_{M} \alpha, \quad Q_{n}(x) \in \operatorname{Lip}_{M} \alpha$, $\forall n=1,2, \ldots$.
(4) $f:[0,1] \rightarrow R$ is called convex of order $m(\geqslant-1)$ on $[0,1]$ (see [8]) if, for any system of distinct points $x_{i} \in[0,1], i=1,2, \ldots, m+2$, $\left[x_{1}, \ldots, x_{m+2} ; f\right]>0$ (where $\left[x_{1}, \ldots, x_{m+2}: f\right]$ denotes the divided
difference). Also, due to T. Popoviciu [8,9], the Bernstein polynomials preserve the convexity of order m, for any $m \geqslant-1$.

Because if f is convex of order m, then $f+c$ (where c is a constant) is also convex of order m for $m \geqslant 0$, it follows immediately that the polynomials $P_{n}(x), Q_{n}(x)$ defined in Theorem 2.1 and Corollary 2.2 preserve convexity of order $m \geqslant 0$.

References

1. B. M. Brown, D. Elliot, and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory 49 (1987), 196-199.
2. S. G. Gal, Sur le théorème d'approximation de Stone-Weierstrass, Mathematica (Cluj) 24 (1981), 33-39.
3. S. G. Gal, Sur les théorèmes d'approximation de Weierstrass, Mathematica (Cluj) 23 (1981), 25-30.
4. S. G. Gal, Sur l'approximation par des polynômes dans $C_{[0,1]}^{p}$, Mathematica (Cluj) 27 (1982), 57-60.
5. S. G. Gal, On the approximation by polynomials in $C_{[0,1]}^{q}$, J. Approx. Theory 42 (1984), 27-29.
6. S. G. Gal, Sur les ensembles denses dans quelques espaces de fonctions réelles, Mathematica (Cluj) 26 (1984), 45-51.
7. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
8. T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Chuj) 8 (1933), 1-85.
9. T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre superieur, Mathematica (Cluj) 10 (1934), 49-54.
